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Abstract

Time-varying electricity prices on the day-ahead and intraday market incentivize

demand response of industrial processes. In prior work (Schäfer et al. AIChE J.

2020;66:1-14), we studied the demand response potential with a generalized process

model, but neglected the intraday market. Extending our prior investigation, we

account for uncertain intraday prices in a mixed-integer linear stochastic program-

ming-based scheduling, that is, we minimize expected cost and conditional value-at-

risk in a bi-objective optimization. We find that for very broad variations of the gen-

eralized process parameters, the conditional value-at-risk can be reduced significantly

without drastically increasing the expected cost. Furthermore, simultaneously

improving multiple process parameter leads to synergetic benefits. Moreover, the

savings of three electrolysis processes can be more than doubled by marketing flexi-

bility on the intraday market in addition to the day-ahead market. Overall, our model

allows for a rapid early assessment of the demand response potential considering the

two markets.

K E YWORD S

conditional value-at-risk, demand response, electricity price uncertainty, production
scheduling, stochastic programming

1 | INTRODUCTION

Wind and solar electricity are key elements of sustainable energy sys-

tems, but their volatile availability causes short-term imbalances

between electricity supply and demand.1 These imbalances have to be

counteracted to stabilize the power grid, for example, by short-term

load and generation adjustments incentivized through the electricity

market.2 Particularly, the day-ahead (DA) and intraday (ID) spot mar-

kets allow for electricity trading 1 day prior to and during the day of

commitment, respectively.

Industrial consumers can adjust their production schedule to

time-varying electricity prices by means of so-called demand response

(DR).3 DR can be economically attractive for flexible, electricity-

intensive production processes, for example, air separation,4 chlor-

alkali electrolysis,5 electric arc steelmaking,6 aluminum electrolysis,7

cement production,8,9 seawater desalination,10 pulp,11 and electrolytic

copper refining.12 Cost-optimal DR for such processes attempts to

shift load from high-priced hours to low-priced hours which generally

correspond to hours with low and high share of renewable electricity

production, respectively.13,14 Thus, DR is not only economically

attractive for process operators but DR is also beneficial for the fur-

ther integration of renewable electricity into the power mix.15–17

The DR potential of a process design under uncertainty can be

maximized by means of the flexibility index, that is, a scalar measure

representing the size of the feasible operational space,18 for example,

in a three level formulation using existence constraints.19 In contrast,
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the DR potential for a fixed process design can be characterized by

the savings of flexible operation compared to inflexible operation, par-

ticularly accounting for time-varying electricity prices. The generalized

DR potential for a wide range of power-intensive processes can be

evaluated via a generalized process model3,20–22 that is not based on

a specific flow sheet but rather characterizes an electricity-intensive

process by means of basic process parameters such as process over-

sizing, ramping limits, and product storage capacities. In our prior

work,21 we used such a generalized process model to quantify the DR

potential of industrial processes in Germany by considering its eco-

nomic and environmental benefits. Solely accounting for the German

DA market and assuming perfect foresight of DA prices, the analysis

neglected the ID electricity market that allows for last-minute demand

and supply adjustments.

Future realizations of ID prices are particularly uncertain due to

strong correlations between prices and renewable electricity genera-

tion.23,24 Price uncertainty can be tackled in DR scheduling optimiza-

tion by means of stochastic programming (SP)4,25,26 that comes at the

cost of computational expense which calls for reduced-order modeling

and tailored solution methods such as progressive hedging or Benders

decomposition, see, for example references 27-29. Typically, SP opti-

mizes the expected cost30 and has been used for various applications

in scheduling under price uncertainty, see, for example references

4,27,31-34. Alternatively, SP can optimize a risk measure such as the

conditional value-at-risk (CVaR)35,36 that allows to consider financial

risks associated to worst case scenarios. Expected cost and CVaR can

be considered simultaneously in a bi-objective optimization to facili-

tate risk-averse scheduling under price uncertainty, see, for example

references 28,29,37,38. Risk-averse SP-based scheduling has been

found to significantly outperform the computationally cheaper bench-

mark expectation of expected value (EEV) considering the optimal

objective value28,29 and has been applied in the context of, for exam-

ple, electricity procurement of large consumers,37 trading strategies of

wind power producers,38 as well as DR of selected industrial pro-

cesses like air separation28 and steel production.29 To the best of our

knowledge, the generalized DR potential of industrial processes has,

however, not been studied in combination with SP-based scheduling

under price uncertainty.

We extend our prior work21 to assess the economic benefit of

DR flexibility considering the DA and ID market while particularly

accounting for short-term price uncertainty. We optimize the process

operation for the next day based on the German DA and ID market in

a two-stage stochastic program and analyze the trade-off between

the expected electricity cost and the CVaR in a bi-objective schedul-

ing optimization. By systematically varying parameters of the general-

ized process model, we compare the impact that the process

parameters have on the scheduling objectives and the economic gain

of additional ID market participation. Finally, as an illustrative exam-

ple, we assess the potential savings of three industrially relevant elec-

trolysis processes, that is, the copper electrolysis, the aluminum

electrolysis, and the chlor-alkali electrolysis.

The remainder of this article is structured as follows: In Section 2,

we present the employed electricity market model. We then discuss

the generalized process model, the stochastic scheduling objectives,

and the solution and evaluation approach in Section 3. In Section 4,

we assess the DR potential of the generalized process by bi-objective

scheduling optimization, evaluate the impact of price volatility, and

investigate three illustrative electrolysis processes. Finally, Section 5

concludes our work.

2 | ELECTRICITY MARKET MODEL

Time varying electricity prices on the spot markets incentivize short-

term load adjustments that are essential for DR. We consider the

example of the German spot market39 as Germany has a relatively

high share of renewable electricity40 as well as energy-intensive

industries. The German spot market uses auction systems to settle

electricity trades. On the DA market, electricity is traded at market

clearing price at noon on day prior to the delivery. On the continuous

ID market, electricity is traded on a pay-as-bid basis, that is, distinct

prices for matching buy- and sell-orders, up to 5 min before delivery.

On both markets, participants have to submit their bids and thus com-

mit to the purchase before the final electricity prices are fixed. For an

extended description of a detailed market model, we refer to Dalle

Ave et al.41

Figure 1 provides an overview of the market model which we use

in our SP-based scheduling. Considering short-term trading for the

next day, we make use of the following assumptions on market partic-

ipation and market prices similar to existing work.27,42 First, the par-

ticipant is a price-taker who does not influence market prices, neither

on the DA nor on the ID market. Second, electricity on the DA market

can be purchased at market clearing price by conservative bidding43

using existing, sufficiently reliable electricity price forecasting

methods.44 Therefore, we assume DA prices for the next day to be

known in our SP-based scheduling. Note that when committing to the

DA trading, the ID prices for the same scheduling horizon are yet

unknown, as the ID market is strongly affected by short-term fore-

casting errors of renewable electricity generation.23 Our third key

assumption therefore is that we can represent the uncertain ID prices

DA 
trade

Delivery
time

12:00 24:00 t-5min t 24:00

DA 
auction

Scheduling horizon

ID 
trade

Known DA price
Uncertain ID price

time

F IGURE 1 Market model for SP-based scheduling: Considering
the scheduling for the next day, hourly blocks of electricity are traded
on the DA market assuming known DA prices. The DA trading ends
the prior day at noon with the DA auction. Afterwards, quarter-hourly
blocks of electricity are traded on the ID market until 5 min before
delivery. ID prices are uncertain when participants commit themselves
to their DA bids.
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by a set of scenarios and assume the participant can buy or sell at

index price on the ID market, that is, the weighted-average price, for

the according delivery time. This assumption leads to a two-stage sto-

chastic program, which is introduced in Section 3. Note that the two-

stage stochastic program approximates a multistage stochastic prob-

lem,45 as in reality, ID electricity can be traded up to 5 min before

delivery in response to both updated ID prices and past trading deci-

sions, opposed to having fixed ID decisions for each price scenario.

The two-stage stochastic approximation leads to an upper bound on

the expected cost of the original multistage program.45 On the DA

and ID market, hourly and quarter-hourly blocks of electricity can be

traded, respectively.

To model representative 24 h-price profiles and scenarios, we use

historic hourly DA market clearing prices and quarter-hourly ID index

prices of 2019.46 Similar to Rahimiyan and Baringo,47 we assume that

the market deviation, that is, the difference between the DA and ID

prices, is uncorrelated to the DA market price. Following our previous

paper,21 we identify dominant price fluctuation patterns by means of

a discrete Fourier transform to assess the seasonality of the price

data. Figure 2A indicates that major frequencies of the DA market

prices are 1/(3 months), 1/week, 1/day, and 1/(12 h), implying sea-

sonal, weekly, daily, and half-daily patterns. In contrast, the market

deviations (Figure 2B) are characterized by major frequencies around

1/h and 1/(30 min) and do not reveal significant daily, weekly, or sea-

sonal patterns.

We use historical market data of 2019 from Energy-Charts46 to

create ID price scenarios. Here, we consider the 201 workdays

(Monday through Thursday, excluding national public holidays) of

2019 and omit Fridays, Saturdays, and Sundays, as price profiles dif-

fer on weekends including Friday.14 First, we retrieve one average

DA price profile thus averaging over any seasonal or weekly pat-

terns. Next, we add the historical market deviation to the average

DA price profile and retrieve 201 ID price scenarios. Figure 3 shows

the resulting average DA price profile and the mean and standard

deviation of the ID price scenarios. Note that by omitting Fridays

through Sundays, we focus on the DR potential on a typical work-

day. Alternatively, an evaluation of the weekday-specific DR

potential could be conducted by considering weekday-specific aver-

age DA prices and ID scenarios.

3 | STOCHASTIC SCHEDULING WITH
GENERALIZED PROCESS MODEL

In the following, we introduce the SP-based scheduling with the gen-

eralized process model. First, we revisit the generalized process model

of our prior work21 and extends it to the quarter-hourly ID market.

Then, we discuss the scheduling objectives. Finally, we specify the

solution and evaluation approach.

(A) Frequency spectra of DA prices (B) Frequency spectra of market
deviation between DA and ID prices

F IGURE 2 Discrete Fourier
transform of German electricity
market data from 2019: The
discrete Fourier transform shows
fluctuation patterns of the market
data considering the DA market
and the price deviation between
the DA and ID markets.

F IGURE 3 Electricity price profile and scenarios based on
working days (Mon-Thu) of 2019 excluding German public holidays: In
case of ID price scenarios, the historical market deviation is added to
the average DA price profile, resulting in 201 price scenarios. The
mean and standard deviation of the ID price scenarios are indicated.
All price data is taken from Energy-Charts.46
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3.1 | Generalized process model

In the following, we revisit the generalized process model used in our

prior work21 and adapt it to simultaneous participation on DA and ID

markets. The model is characterized by the process parameters given

in Table 1 and the model equations are based on the source code pro-

vided in the supporting information of Schäfer et al.21

The generalized process model is an ideal storage-type customer

with flexible operation and a product storage.3 We assume quasi-

steady-state operation within any time interval of the discrete sched-

uling horizon. The process flexibility is characterized by the nominal

power intake Pnom, the process oversizing θadd, the minimal part-load

θmin, the product storage capacity S, and the ramping limit R. The pro-

cess model is defined by the following set of equations:

Pnomθmin ≤ ps,t ≤Pnom 1þθaddð Þ 8 s,tð Þ� � 1,…,Tf g, ð1Þ

ps,t ¼ qDA, t�1
4b cþ1þqID,s,t 8 s,tð Þ� � 1,…,Tf g, ð2Þ

Pnom T¼
XT

t¼1

rs,t 8s� , ð3Þ

rs,t ¼ ps,t 8 s,tð Þ� � 1,…,Tf g, ð4Þ

�Pnom R≤
ps,tþ1�ps,t

Δt
≤Pnom R 8 s,tð Þ�� 1,…,T�1f g, ð5Þ

ls,tþ1 ¼ ls,tþ rs,t�Pnomð ÞΔt 8 s,tð Þ� � 1,…,Tf g, ð6Þ

0≤ ls,t ≤Pnom S 8 s,tð Þ�� 1,…,Tf g, ð7Þ

ls,1 ¼ ls,Tþ1 ¼0:5 Pnom S 8s�: ð8Þ

In Equations (1)–(8), ps �ℝT denotes the power intake, qDA �ℝ T=4b c

and qID,s �ℝT are the purchases from the DA and ID market, rs �ℝT is

the effective production rate, ls �ℝT is the storage level,  denotes

the set of ID price scenarios, T is the number of quarter-hourly steps,

and Δt = 0.25 h is the time step size. The nominal power intake Pnom,

the process oversizing θadd, and the minimal part-load θmin restrict the

power intake and, thus, the electricity purchase decisions (Equations 1

and 2). The flexible operation has to produce as much as a steady-

state nominal production would achieve in the 24 h scheduling hori-

zon (Equation 3). The production depends on the effective production

rate rs which is equal to the power-intake ps when neglecting effi-

ciency losses (Equation 4). The ramping limit R restricts the change of

power intake between consecutive time steps to enforce safety and

process constraints (Equation 5). We consider an ideal product stor-

age that is filled by the effective production and has to meet a contin-

uous, constant product demand corresponding to the nominal

production (Equation 6). Here, the product storage capacity S corre-

sponds to the time necessary to fill an empty storage at nominal pro-

duction Pnom and, thus, restricts the storage level (Equation 7).

Furthermore, initial and final storage levels are fixed to enforce a

cyclic behavior and prevent the product storage to be emptied at the

end of the scheduling horizon (Equation 8). Note that for a process

that is not constrained by a product storage, Equations (6)-(8) can be

removed from the process model. Furthermore, Section 1 of the sup-

porting material proves that Equations (6) and (8) implicitly enforce

the production goal (Equation 3). Thus, Equation (3) is redundant but

has to be explicitly added to the model in case of processes without

storage constraints.

The total amount of purchased electricity is restricted by Equa-

tions (1) and (2) for each time step. Additionally, we restrict the DA

purchases by means of

0≤ qDA,t ≤Pnom 1þθaddð Þ 8t� 1,…, T=4b cf g ð9Þ

in order to not exceed the possible process power intake and, thus,

take the position of an electricity consumer with process-limited trad-

ing capacity. We want to point out that Equations (1) and (2) implicitly

allow for selling purchased DA electricity on the ID market as long as

the power intake ps, that is, the sum of the purchases, is feasible.

For a model considering efficiency losses at off-design operation,

Schäfer et al.21,32 estimate the effective production rate rs,t from a

cubic function of the power intake ps,t:

rs,t ¼ 1� ζ
Pnom�ps,t

Pnom�Pnomθmin

� �2
 !

ps,t 8 s,tð Þ�� 1,…,Tf g: ð10Þ

Here, the process parameter ζ characterizes the relative loss of pro-

duction efficiency at minimal part-load θmin compared to Pnom. Follow-

ing Schäfer et al.,21,32 we embed efficiency losses into the process

model by means of a piecewise linear approximation with a set of

equidistant support points {(pi, ri)}. Instead of using the formulation of

Schäfer et al.21,32 with equality constraints and binary variables, we

apply a reformulation into a set of inequality constraints without

binary variables as suggested by Varelmann et al.48 Thus, for a process

with efficiency losses, Equation (4) is replaced by

TABLE 1 Parameters of the generalized process model: The
parameters θadd, θmin, S, R, and ζ are given in relation to the nominal
power intake Pnom.

Parameter Description Unit

Pnom Nominal power intake [MW]

θadd Process oversizing [%]

θmin Minimal part-load [%]

S Product storage capacity, that is, time to

fill empty storage

[h]

R Ramping limit between two consecutive

time steps

[%/h]

ζ Efficiency loss at minimal part-load

compared to Pnom

[%]

τoff Maximum consecutive down-time [h]

4 of 14 GERMSCHEID ET AL.
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rs,t ≤ biþ sips,t 8 i,s,tð Þ� I �� 1,…,Tf g ð11Þ

with bi ≔ ri� sipi, ð12Þ

si ≔
riþ1� ri
piþ1�pi

, and ð13Þ

ri ≔ 1�ζ
Pnom�pi

Pnom�Pnomθmin

� �2
 !

pi , ð14Þ

where bi and si denote the linearization parameters intercept and

slope, respectively, for the set of linearization intervals I . Note

that the reformulation Equations (11)-(14) only holds due to the con-

cave curvature of Equation (10) in the interval ps,t � [Pnomθmin,

Pnom(1+ θadd)].
48 When considering efficiency losses, we therefore

limit the maximum operational range to ±50% Pnom by means of θmin

and θadd to ensure an adequate linearization by five linearization

points.

Production during peak priced hours can be completely avoided

by allowing for temporary shutdowns. Shutdowns with a maximum

down-time τoff (in [h]), that is, consecutive hours with a turned-off

process, are modeled by:

ytþτoff ≥ zoff,t 8t� 1,…, T=4b c� τofff g,
ð15Þ

zon,t� zoff,t ¼ ytþ1�yt 8t� 1,…, T=4b c�1f g,
ð16Þ

zon,tþ zoff,t ≤1 8t� 1,…, T=4b cf g,
ð17Þ

�y t
4b cþ1PnomR� 1�y t

4b cþ1

� �Pnomθmin

Δt
≤
ps,tþ1�ps,t

Δt
8 s,tð Þ� � 1,…,T�1f g,

ð18Þ

ps,tþ1�ps,t
Δt

≤ y t�1
4b cþ1PnomRþ 1�y t�1

4b cþ1

� �Pnomθmin

Δt
8 s,tð Þ�� 1,…,T�1f g,

ð19Þ

y t�1
4b cþ1Pnomθmin ≤ ps,t ≤ y t�1

4b cþ1Pnom 1þθaddð Þ 8 s,tð Þ� � 1,…,Tf g:
ð20Þ

In Equation (15), τoff ≔ τoff/h denotes the maximum number of turn-

off hours and is introduced for correct indexing. The binary variable y

� {0, 1}bT/4c specifies whether the process is turned on or off. The

binary variables zon � {0, 1}bT/4c and zoff � {0, 1}bT/4c indicate a transi-

tion from off to on and vice versa. Equation (15) forces the process to

run again after at latest τoff hours after having been turned off. Equa-

tion (16) links the transitions zon and zoff to the process being on or

off. The solutions zon,t = zoff,t = 1 and zon,t = zoff,t = 0 both indicate

an unchanged on/off state of the process, that is, yt+1 = yt. Equa-

tion (17) breaks this symmetry of Equation (16), that is, Equation (17)

reduces the feasible space by removing the solution zon,t = zoff,t = 1.

Following reference 21, we assume that process operation is limited

to the minimal part-load θmin prior and subsequent to a shutdown

and, thus, adapt the restrictions on the power intake and ramping

(Equations 1 and 5) accordingly to obtain the integer formulation in

Equations (18)-(20).

For the analysis in Section 4, we model shutdowns by means of

hourly, first-stage discrete decisions. Note that considering shutdown

decisions on the second stage of the stochastic program would allow

for the most flexible process operation but would strongly increase

the computational burden of solving the optimization problem due to

the resulting large number of binary variables, that is, one per scenario

and quarter-hourly time step.

3.2 | Scheduling objectives

In the scheduling under price uncertainty, we minimize the expected

cost E[C]SP and the conditional value-at-risk CVaRSP. Both objectives

are shown for an exemplary probability distribution in Figure 4. In the

scheduling, we use the set of scenarios  that describes possible reali-

zations of uncertain ID electricity prices. Note that we consider opera-

tional electricity cost only and thus neglect investment and

maintenance cost due to flexibilization measures. The expected cost

E C½ �SP ¼
X
s � 

πsCs qDA,qID,s

� � ð21Þ

is the weighted sum of the cost of all scenarios. For our set of histori-

cal scenarios, the weights are equi-probable, that is, πs ¼1= j  j, but in
principle πs could vary, for example, as result of clustering49 or proba-

bilistic forecasting.50 The electricity cost Cs with hourly DA prices

cDA �ℝ T=4b c and quarter-hourly ID prices cID,s �ℝT in [EUR/MWh] is

defined as

Cs qDA,qID,s

� �¼4Δt � cDA �qDAð ÞþΔt � cID,s �qID,s

� � ð22Þ

with Δt = 0.25 h.

In addition to E[C]SP, we minimize CVaRSP to account for the high

cost associated with worst case scenarios. Generally, CVaR

F IGURE 4 Expected cost E[C] and conditional value-at-risk CVaR
of an exemplary probability distribution: CVaR is the expected
electricity cost of the (1 � α)-probable worst outcomes of the
probability distribution.

GERMSCHEID ET AL. 5 of 14
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corresponds to the expected value of the (1 � α)-probable worst out-

comes for a given probability distribution and a chosen confidence

level α.35,36 A linear programming-based optimization of CVaRSP is

possible by means of the constraints

CVaRSP ¼ψþ

P
s � 

πsϕs

1�α
ð23Þ

and

Cs qDA,qID,s

� ��ψ ≤ϕs8s�  ð24Þ

with the continuous auxiliary variables ψ �ℝ and ϕ�ℝjj
≥0.

35 If the

cost Cs of a scenario s exceeds ψ , ϕs equals the difference between

the scenario cost Cs and the variable ψ . Otherwise, ϕs equals zero.

3.3 | Solution and evaluation approach

For the analysis in Section 4, we fix the following parameters: For

the piecewise linear approximation of the efficiency losses, we use

five equi-sized intervals. CVaRSP is optimized at confidence level

α = 0.9. To perform the bi-objective optimization of E[C]SP and

CVaRSP, we determine the Pareto curve by the ϵ-constraint

method51 using 10 Pareto optima that are equidistant with respect

to CVaRSP. The optimization is a two-stage stochastic program with

qDA and ψ as first-stage variables and qID,s and ϕs as second-stage

variables. The stochastic program is formulated in terms of the

deterministic equivalent and the resulting MILPs are solved using

Gurobi 9.1.152 with default solver settings on an Intel Core i5-

8265U processor and 24GB RAM.

For benchmarking, we also compute the wait-and-see solution

(WS) and the expectation of expected value (EEV). WS assumes per-

fect foresight of uncertain events and allows for individual first stage

decisions for each scenario.53,54 Thus, WS serves as an Utopian lower

bound for the SP-based scheduling. The difference between WS and

the stochastic program is defined as the expected value of perfect

information. To compute the EEV, the problem is first optimized with

a single expected-value scenario, that is, the mean of the ID price sce-

narios, followed by a second optimization with all scenarios but fixed

first-stage decisions.55 The difference between the stochastic pro-

gram and the EEV is defined as the value of stochastic solution. For

more detailed information on WS and EEV, we refer to Birge and Lou-

veaux.30 Note that, we evaluate both E[C] as well as the CVaR of WS

and EEV based on their respective optimal schedules.

As a reference, we consider the cost of inflexible operation as

well as the cost of a DA-only scheduling as in our prior work.21 The

DA-only scheduling cost refers to the cost of flexible process opera-

tion with purchases from the DA market only and thus without con-

sideration of the ID market. The inflexible operation cost refers to the

cost of steady-state operation at Pnom, where again only the DA market

is used for electricity procurement. The inflexible operation cost and

the DA-only scheduling cost allow us to evaluate the relative eco-

nomic gain of ID market participation:

Relative economic gain

¼ Minimal E C½ �SP� Inflexible operation cost
DA-only scheduling cost� Inflexible operation cost

:
ð25Þ

4 | ANALYSIS OF DEMAND RESPONSE
POTENTIAL

In this section,we assess theDRpotential of simultaneousDA and IDmar-

ket participation. In particular, we analyze the impact of the process

parameters introduced in Section 3.1 on the scheduling objectives. First,

we discuss the influence of individual process parameters, whereas in the

subsequent section, we focus on the interplay of the parameters. Next,

we evaluate the impact of electricity price volatility on the ID market.

Finally, we provide an illustrative example on how theMILP-based sched-

uling formulation can be used to perform a rapid early assessment of the

DR savings potential in case of a specific, industrially relevant process.

4.1 | One-at-a-time variation of process
parameters

In the following, we evaluate the impact of the individual process

parameters on the expected cost E[C]SP and the conditional value-at-

risk CVaRSP and draw a comparison to the three benchmarks

F IGURE 5 SP-based scheduling objectives and benchmarks for an
illustrative reference process: The Pareto curve of the SP-based
scheduling shows the trade-off between the minimal E[C]SP and the
minimal CVaRSP. The properties of the illustrative reference process
are θadd = 20%, θmin = 50%, S = 3 h, R = 25%/h, ζ = 0%, and

τoff = 0 h. In contrast to the SP-based scheduling, DA-only scheduling
of the flexible process allows purchases only from the DA market. The
expectation of expected value (EEV) neglects ID price uncertainty.
The wait-and-see solution (WS) considers perfect foresight of the ID
price uncertainty. All values are normalized to the cost of inflexible
operation.
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(DA-only, WS, and EEV). To this end, we assume a flexible illustrative

reference process with oversizing θadd = 20%, minimal part-load

θmin = 50%, storage capacity S = 3 h, ramping limit R = 25%/h, effi-

ciency loss ζ = 0%, and a maximum allowed down-time τoff = 0 h and

perform a one-at-a-time variation of the process parameters.

Figure 5 shows the Pareto curve for the SP-based scheduling and

its relation to the benchmarks. The economic gain of ID market partic-

ipation is the difference between the expected cost of DA-only

scheduling and SP-based scheduling. Note that for the DA-only

scheduling, E[C] equals CVaR as no price uncertainty is present. We

observe that the bi-objective SP-based scheduling returns a Pareto

curve resembling a hockey stick, that is, CVaRSP can be reduced signif-

icantly with only minor increases in E[C]SP. Per definition, the Pareto

curve is framed by the minimal E[C]SP and minimal CVaRSP. It can be

noted that the EEV and the minimal E[C]SP are particularly similar but

not identical with respect to both E[C] and CVaR, indicating a very

small value of stochastic solution. Furthermore, the Utopian WS solu-

tion indicates major additional savings could be attained with perfect

foresight of the ID electricity prices, thus indicating a large expected

value of perfect information.

Figure 6A–C shows the market decisions for the DA-only sched-

uling, minimal E[C]SP, and minimal CVaRSP. The DA-only scheduling

and the minimal CVaRSP show very similar DA purchase decisions,

that is, both avoid the price peaks in the DA market (compare to Fig-

ure 3) in the morning (6-10 h) and evening (17 h-21 h). In contrast,

minimal E[C]SP leads to an oversupply of DA electricity, that is, maxi-

mal-allowed purchases of 120%, allowing for last minute sales on the

ID market. The ID adjustments of both minimal E[C]SP and minimal

CVaRSP suggest similar total electricity purchases, tend to increase

production during night hours (0-6 h, 23-24 h) with overall low elec-

tricity prices, and generally show a strong scenario dependency.

Figure 6D shows expected value, standard deviation, and a probability

distribution of the electricity cost for the different schedules. The

probability distribution is estimated based on kernel density estima-

tion using the build-in functionality of the Python package Pandas56

with standard settings. For the DA-only scheduling no price uncer-

tainty is present, leading to an infinite density at the expected cost.

While minimal E[C]SP has a lower expected cost than minimal CVaRSP,

its estimated cost distribution and standard deviation is much broader.

Furthermore, a significant quantile of the distribution resulting from

minimal E[C]SP is above the DA-only scheduling cost and the inflexible

operation cost (100%). In contrast, the distribution of minimal CVaRSP

has a much smaller quantile above the DA-only scheduling cost and

an insignificant quantile above the inflexible operation cost. Overall,

minimizing E[C]SP may result in DA electricity purchases that disregard

price peaks in the DA price signal and has a relatively high probability

of leading to electricity cost larger than the DA-only scheduling cost

or the inflexible operation cost. In contrast, minimal CVaRSP shows a

strong response to the DA price signal and rather narrow cost distri-

bution with less cases above the DA-only scheduling cost.

Figure 7 shows the impact of the individual process parameters

on the minimal E[C]SP and reveals that the process oversizing gener-

ally has the largest impact, that is, process oversizing allows the stron-

gest cost reductions due to flexibilization in the reference process.

(A) DA-only scheduling (B) Minimal E[C]SP

(C) Minimal CVaRSP (D) Cost density

F IGURE 6 Market decisions and
estimated cost density for the illustrative
reference process (θadd = 20%,
θmin = 50%, S = 3 h, R = 25%/h,
τoff = 0 h, ζ = 0%): The market decisions,
that is, DA purchases and ID adjustments
relative to the nominal power intake Pnom,
are given for the (A) DA-only scheduling,
(B) minimal E[C]SP, and (C) minimal

CVaRSP. (D) The probability distribution of
the electricity cost is estimated by means
of the kernel density estimation for the
minimal E[C]SP and minimal CVaRSP. The
horizontal bars reflect the mean value and
the standard deviation.
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The impact of minimal part-load, ramping limits, and storage capacities

are somewhat smaller and similar to each other in magnitude. The

small but noticeable gradients between 50% and 60% minimal part-

load and 40% and 50% ramping limitations suggest that cost can be

reduced even further with lower minimal part-load or even looser

ramping. In contrast, no additional benefit can be gained from product

storage capacities larger than 3 h due to the restrictive 24 h schedul-

ing horizon and the cyclic constraint for initial and final storage level.

Varying the maximum allowed down-time has only a minor impact,

which is further discussed in the following subsection. In contrast to

the other process parameters, the shape of the efficiency loss curve is

concave due to the cubic definition of the efficiency losses (Equa-

tion 10). Particularly for processes with large efficiency losses, ID mar-

ket participation can significantly lower the minimal E[C]SP, whereas

DA-only scheduling would hardly allow for any savings in such a case.

Large efficiency losses lead to an overall larger energy consumption as

a result of flexible operation, but still allow for profitable marketing of

flexibility by exploiting price differences in the two markets.

The relative economic gain of ID market participation as defined

in Equation (25) (right axis in Figure 7) does not follow a monotonous

trend, for example, the relative gain decreases for a process oversizing

between 0% and 25% but increases again beyond 25%. Nevertheless,

we observe that for less flexible processes the relative economic gain

of ID market participation tends to be larger than for more flexible

processes. Thus, ID market participation can be particularly attractive

for processes with less room for flexibilization. Moreover, we observe

that for processes with large efficiency losses, the relative gain

increases most drastically.

Assuming perfect foresight of ID prices, the WS solution in Fig-

ure 7 suggests that significant cost reductions by ID market

F IGURE 7 One-at-a-time
variation of the process
parameters for the illustrative
reference process (θadd = 20%,
θmin = 50%, S = 3 h, R = 25%/h,
τoff = 0 h, ζ = 0%): The expected
cost E[C] are given relative to the
inflexible operation cost. The
relative economic gain of ID

market participation is evaluated
as defined in Equation (25). Only
the marked points are
optimization results. The lines
have been added to guide the eye
of the reader.
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participation are possible even for inflexible processes, that is, WS

cost for processes with no flexibility (θadd = 0%, θmin = 100%,

R = 0%/h, or S = 0 h) are approximately between 92% and 94% of

the expected cost of operation with purchases only on the DA market.

These savings can be explained by arbitrage opportunities that are

possible as the constraints Equations (1), (2) and (9) allow the electric-

ity consumer (i) to make excessive purchases on the DA market and

then re-sell the excessive electricity on the ID market and (ii) to not

cover electricity consumption on the DA market but purchase elec-

tricity on the ID market instead. In addition to the WS solution, pro-

cesses with restricted minimal part-load, ramping limitations, or

storage capacity show a slight arbitrage effect with respect to the

minimal E[C]SP. Note that the electricity purchase restriction (Equa-

tion 9) does not allow an inflexible non-oversized process to make

excessive purchases on the DA market. Thus, its arbitrage potential is

generally smaller.

EEV and minimal E[C]SP differ noticeably for maximum down-

times larger than 2 h. As the binary on/off decisions have to be made

before the uncertain ID prices are realized but have large conse-

quences, consideration of price uncertainty by means of SP-based

scheduling is particularly important to optimize profitability. For all

other process parameter variations, the difference between EEV and

minimal E[C]SP is found to be insignificant.

Table 2 shows the maximal computation times for the subprob-

lems of the one-at-a-time variations. For the DA-only scheduling,

EEV, and the WS solution, the maximal computation times are signifi-

cantly lower compared to the minimal E[C]SP, as the respective prob-

lem sizes are much smaller. For all scheduling approaches, the

computational times for the basic process model, that is, the case

where only variations in the process oversizing, minimal part-load,

ramping limitations and storage capacity are considered, are the low-

est, followed by models with efficiency losses and, finally, models with

shutdown capabilities. Particularly the consideration of shutdowns

increases computational times significantly due to the introduction of

binary variables. Note that modeling binary decisions on the second

stage could potentially decrease the electricity cost further, but would

involve discrete recourse decisions on the second stage, leading to

strongly increasing solution times.

In contrast to Figure 7, Figure 8 focuses on both E[C] and CVaR,

where CVaR is the expected cost of the 10% worst case scenarios,

and shows the impact of process oversizing and efficiency loss varia-

tions. Varying the other process parameters leads to similar conclu-

sions. The corresponding figures can be found in Section 2 of the

supporting material. Our analysis shows that the SP-based scheduling

consistently leads to a Hockey stick curve, that is, significant reduc-

tions of CVaRSP can be achieved without strongly increasing E[C]SP.

TABLE 2 Maximal computation time
in seconds and problem size of a single
optimization run in the one-at-a-time
variation: All points on a Pareto curve of the
SP-based scheduling have the same
degrees of freedom and constraints and,
hence, their computational times can be
represented by the times ofminimal E[C]SP.

DA-only Min. E[C]SP EEV (1) EEV (2) WS

Basic process model 0.049 s 25.660 s 0.065 s 0.067 s 0.051 s

W/efficiency losses 0.026 s 47.243 s 0.316 s 0.217 s 0.253 s

W/shutdowns 0.763 s 204.319 s 1.433 s 0.326 s 0.617 s

Degrees of freedom 24 24þ96� j  j 24 + 96 96 24 + 96

Number of problems 1 1 1 j  j j  j

Note: For EEV, the times of (1) the single expected-scenario optimization and (2) the optimization with all

scenarios and fixed first-stage decisions are stated separately. For WS and EEV (2), the maximal average

time of the j  j independent problems is reported.

F IGURE 8 Impact of one-at-a-time
variation on both E[C] and CVaR for the
illustrative reference process (θadd = 20%,
θmin = 50%, S = 3 h, R = 25%/h,
τoff = 0 h, ζ = 0%): The impact of varying
process oversizing is shown left, whereas
the impact of varying efficiency losses is
shown right.
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Furthermore, EEV and minimal E[C]SP are always highly similar. While

process oversizing allows to decrease E[C]SP significantly, the largest

Pareto-optimal CVaRSP hardly changes, indicating that the financial

risk for lowest expected cost cannot be reduced considerably (Fig-

ure 8, left). This observation does not extend to the efficiency loss

variation (Figure 8, right) which affects both E[C]SP and CVaRSP to a

similar degree. Interestingly, CVaRSP of processes with large efficiency

losses can become larger than the cost of inflexible operation. In con-

trast, the minimal CVaRSP is always much lower than the cost of

inflexible operation. The large CVaRSP observed for some parameter

combinations therefore motivates a bi-objective scheduling optimiza-

tion where financial risk and expected operational cost can be

traded off.

Overall, we observe significant savings due to ID market partici-

pation. Furthermore, the relative economic gain suggests that ID mar-

ket participation is particularly attractive for processes with only a

modest amount of flexibility or significant efficiency losses. Indepen-

dent of the process parameters, the Pareto curve resembles a Hockey

stick curve, thus allowing to significantly reduce CVaRSP.

4.2 | Two-at-a-time variation of process
parameters

In the following, we study the impact of varying two process parame-

ters at a time. We consider the same illustrative reference process as

in the prior subsection and discuss the effects on minimal E[C]SP and

the relative economic gain of ID market participation for an exemplary

combination of process parameters. Results for all binary combina-

tions can be found in Section 2 of the supporting material.

Figure 9A shows the impact of concurrent process oversizing and

minimal part-load variations. The two-at-a-time variation suggests a

synergetic benefit, that is, the gained benefit of varying two parame-

ters exceeds the sum of the gains resulting from single parameter vari-

ations, as exemplified in the red rectangle in Figure 9A. In fact,

synergy can be observed across all binary parameter combinations,

which suggests that significant savings can be achieved by leveraging

multiple process parameters instead of maximizing the flexibility of

any single process parameter.

Figure 9B shows a significant relative economic gain of marketing

flexibility on the ID market for any combination of process parame-

ters. In contrast to the minimal E[C]SP in Figure 9A, no combinatorial

effect or clear trend can be observed, that is, no monotonous in- or

decrease. Therefore, the relative economic gain depends on the spe-

cific combination of the process parameters and the optimization

results cannot be predicted from the one-at-a-time assessments.

Figure 10 shows the particular interplay between minimal part-

load and maximum down-time. The shutdown constraints (Equa-

tions 18 and 19) involves the minimal part-load θmin, as we assume

that the process can only shut down from and restart to the state of

the minimal feasible part-load. A significant impact of shutdowns can

only be observed for minimal part-loads above 70%, where minimal E

[C]SP may change significantly between a maximum down-time of 1

and 2 h. Each hour of down-time requires the process to catch up the

(A) Minimal E[C]SP (B) Relative economic gain

F IGURE 9 Impact of two-at-
a-time variation of process
oversizing and minimal part-load
for the illustrative reference
process (S = 3 h, R = 25%/h,
τoff = 0 h, ζ = 0%): Minimal E[C]SP
is given relative to the inflexible
operation cost. The relative
economic gain is evaluated as
defined in Section 3.3. The red
rectangle exemplifies the
synergetic behavior of parameter
combinations considering minimal
E[C]SP.

F IGURE 10 Impact of minimal part-load and shutdown
capabilities on minimal E[C]SP for the illustrative reference process

(θadd = 20%, S = 3 h, R = 25%/h, ζ = 0%) relative to the inflexible
operation cost
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lost production in advance or later on, while being restricted to the

minimal part-load θmin prior and subsequent to the shutdown. There-

fore, only processes with specific characteristics, for example, high

minimal part-load, can profit from down-times. Furthermore, the 24 h

scheduling horizon restricts shutdown opportunities such that the

impact of shutdowns is insignificant compared to the results from our

prior work21 where we considered a 1-year scheduling horizon.

Overall, the synergetic benefit of changing multiple parameters at

once suggests that flexibilization efforts ideally target more than one

process parameter. Furthermore, we observe a significant, but non-

trending relative economic gain of ID market participation, demon-

strating the value of the proposed MILP stochastic scheduling in use-

case specific evaluation. Moreover, shutdown capabilities are

beneficial only for specific processes with a high minimal part-load,

given the 24 h scheduling horizon.

4.3 | Impact of electricity price volatility

In the following, we analyze the impact of electricity price volatility on

the scheduling objectives. To this end, we vary the volatility of the ID

price scenarios by scaling the standard deviation of ID price scenarios

by a factor of two. Note that this scaling leads to an increased number

of hours with negative ID prices. Negative electricity prices already

occur in the German market57 and their occurrence is expected to

increase until 2030 due to an increasing share of renewable electric-

ity.58 We slightly modify the reference process from the one-at-a-

time and two-at-a-time assessment as we now consider a non-ideal-

ized process with 10% efficiency loss (θadd = 20%, θmin = 50%,

S = 3 h, R = 25%/h, ζ = 10%, and τoff = 0 h).

Figure 11 shows the impact of ID price volatility on the DR

potential. Note that the values for the DA-only cost are unaf-

fected since only the ID price scenarios are scaled. As expected,

higher ID price volatility generally makes marketing of flexibility

on the ID market more economically attractive. Importantly, high

ID price volatility can cause CVaRSP to rise significantly above the

inflexible operation cost, that is, for the 10% worst cases flexible

operation is on average more expensive than inflexible operation.

Therefore, consideration and optimization of CVaRSP are particu-

larly interesting for electricity markets with high ID price

volatility.

4.4 | Application to three illustrative electrolysis
processes

In the following, we apply the process model to three illustrative

power-intensive processes of industrial relevance to exemplify how

our approach can be used as an early-stage screening method for

investigation of flexibilization measures of a given process. Based on

our prior work, we have deduced the key parameters given in Table 3

for the copper electrolysis,12 the aluminum electrolysis,32 and the

chlor-alkali electrolysis.59

TABLE 3 Overview of electrolysis process properties based on Röben et al.,12 Schäfer et al.,32 and Brée et al.59: Assuming infinite storage
capacity, that is, no scheduling-relevant storage constraints exist, the influence of the storage constraints can be effectively removed from the
optimization problem in case of the copper electrolysis.

Process Pnom θadd θmin S R ζ τoff

Copper electrolysis 14.97 MW 10.5% 0% (∞ h) 400%/h (0.0%) (0 h)

Aluminum electrolysis 90 MW 25% 75% 24 h 400%/h 1.0% (0 h)

Chlor-alkali electrolysis 2.34 MW 13% 42% 3 h 142%/h a (0 h)

Note: Instantaneous ramping, that is, 400%/h given the 0.25 h time step size, is assumed to be possible for copper and aluminum electrolysis. Values in

parenthesis have not been assessed in our prior work.
aThe relationship between power intake and production rate for the chlor-alkali electrolysis has a different form than Equation (10). The appropriate

integration into the model can be found in Section 3 of the supporting material and does not require a specification of an efficiency loss ζ.

F IGURE 11 Impact of price volatility on scheduling objectives
and benchmarks for an illustrative process with 10% efficiency loss
(θadd = 20%, θmin = 50%, S = 3 h, R = 25%/h, ζ = 10%, τoff = 0 h):
The ID price scenarios have been scaled such that their standard
deviation is halved and doubled for low volatility and high volatility
scenarios, respectively.
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Figure 12 shows the impact of marketing flexibility on DA and ID

markets for the three processes. All three processes can gain signifi-

cantly by additional participation on the ID market as indicated by the

large relative economic gain (Table 4). Copper electrolysis is a particu-

larly promising candidate as it has the largest relative economic gain,

that is, its savings of marketing flexibility on the DA market alone can

be more than doubled by ID market participation. On the contrary,

the chlor-alkali electrolysis has the least savings potential due to more

restricted process oversizing, storage constraints, and ramping limita-

tions. For the DA-only cost, the savings for the aluminum and copper

electrolyses are very similar, as the aluminum electrolysis has large

headroom due to large process oversizing while the copper electroly-

sis is assumed to have unrestricted minimal part-load capabilities. It

shall be noted that we observe significant potential for cost savings,

although we use simple, historic ID price scenarios instead of any

more sophisticated ID price forecasting method. Overall, the general-

ized process model allows for a rapid first assessment of the DR

potential of any given process whose behavior can be described with

the generalized process model (Equations 1-9 and 11-20). Thus, the

approach allows exploring the potential of different flexibilization

measures without the need to perform time-consuming process

modeling.

5 | CONCLUSION

In this article, we have extended our prior assessment of the DR

potential of industrial processes using a generalized process model.21

Specifically, we have considered the opportunity of additionally mar-

keting flexibility on the intraday (ID) electricity market. To this end,

we have optimized the DR scheduling of a generalized process model

with known DA and uncertain ID prices by means of mixed-integer

linear stochastic programming. The generalized process model is char-

acterized by key process properties, namely process oversizing, mini-

mal part-load, product storage capacity, ramping limitation, efficiency

losses, and temporary shutdowns. In a bi-objective scheduling optimi-

zation, we minimized expected cost and conditional value-at-risk

(CVaR) and visualized the resulting trade-offs as Pareto curves.

Our analysis reveals that process oversizing has the most signifi-

cant impact on the expected cost. Furthermore, processes with large

efficiency losses can hardly benefit frommarketing flexibility on the DA

market but may significantly lower their operational cost by ID market

participation. Increasing flexibility through multiple process parameters

leads to synergetic benefits, that is, the economic gains exceed the

additive effects brought by the individual measures. The relative eco-

nomic gain of ID market participation in relation to DA-only scheduling

does not follow a clear trend but depends on the specific process

parameter combinations. In general, however, the results suggest that

less flexible processes can gain relatively more from ID market partici-

pation compared to more flexible processes. For the three investigated

processes, that is, copper electrolysis, aluminum electrolysis, and chlor-

alkali electrolysis, our analysis suggests that more than twice the sav-

ings can be achieved by also marketing flexibility on the IDmarket com-

pared to exclusive consideration of the DAmarket.

Studies on stochastic DR scheduling of specific processes under

electricity price uncertainty have unanimously reported insignificant

values of stochastic solution when optimizing the expected cost

only.27–29,33 Zhang et al.28 attribute this behavior to presumably simi-

lar scheduling decisions in stochastic and deterministic approaches

due to reoccurring trends in the price scenarios. Our work confirms

and generalizes the finding of insignificant value of stochastic solution

as we could show that the expectation of expected value (EEV) is

always very close to the minimal expected cost E[C]SP, independent of

the investigated process parameter, with the exception of shutdown

times where binary on/off decisions must be made before the uncer-

tain ID prices are realized. However, our results suggest that CVaRSP

can be significantly reduced without strongly increasing E[C]SP by bi-

objective stochastic scheduling, as the Pareto curve always resembles

a Hockey stick curve, independent of the investigated process param-

eter combinations. Furthermore, the maximal Pareto-optimal CVaRSP

can become larger than the inflexible operation cost, particularly in

case of processes with large efficiency losses and in markets with high

electricity price volatility.

In an industrial setting, the amount of flexibility a process can pro-

vide is defined by technical feasibility, safety requirements, and also

investment decisions. Adjustments of process parameters, for exam-

ple, by retrofitting a storage unit, thus always require further process-

TABLE 4 Relative economic gain of ID market participation

Process Relative economic gain

Copper electrolysis 2.29

Aluminum electrolysis 1.87

Chlor-alkali electrolysis 2.08

F IGURE 12 Pareto curve and benchmarks of SP-based
scheduling for three illustrative electrolysis processes (Table 3)
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specific investigations. However, the particular value of our work is

that it allows for a priori estimation of the effects such changes might

exert on the DR potential. Our model can therefore be used for rapid

early screening of possible flexibilization measures. Future research

could address the (semi-)automatic deduction of key process parame-

ters from flow sheet or resource-task-network models as well as the

deduction of a scalar metric similar to the flexibility index18 that would

represent the size of the feasible operational space as a function of

the generalized process parameters. Furthermore, an integration of

the 24 h stochastic scheduling into a longer-term scheduling is essen-

tial to utilize larger storage capacities and shutdown capabilities.

Finally, we have found significant cost saving potential using basic,

historic ID price scenarios. However, the wait-and-see solutions sug-

gest that probabilistic price forecasting methods50 could offer signifi-

cant further economic benefit by using information such as price

seasonality or renewable energy generation forecasts. Along the same

lines, the impact of weekday-specific price profiles on the DR poten-

tial could be investigated by using weekday-specific average DA pro-

files and ID scenarios opposed to focusing on workday-specific price

profiles as done in this article.
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